METHOD OF ENVIRONMENTALLY FRIENDLY HARDENING OF SHEET METAL PARTS BY ELECTROEROSIVE ALLOYING WITH A GRAPHITE ELECTRODE

Authors

  • V. Tarelnyk
  • О, Haponova Sumy State University
  • B. Sarzhanov Sumy National Agrarian University

DOI:

https://doi.org/10.31471/2415-3184-2019-2(20)-118-126

Keywords:

environmentally friendly hardening, electroerosive alloying, cementation, tempering, microhardness, roughness.

Abstract

The technical solution is presented in article. It is related to field of mechanical engineering and machine repair, in particular to environmentally friendly restoration and simultaneous hardening, by cementation electroerosive alloying (CEEA) with graphite electrode of sheet steel parts. The method of environmentally hardening of sheet metal parts by the CEEA involved hardening and tempering. At the first stage, the steel part is heated to the hardening temperature of the steel from which it is made, followed air or oil cooling, and at the second stage, the part after alloying on the first stage is heated to tempering temperature, followed air cooling. For heated to temperature of hardening and tempering at CEEA of sheet metal surfaces parts with a 1.0 to 10 mm thickness used a discharge energy of 4.6-6.8 J and a productivity of 0.2-3.0 cm2 / min. For uniform distribution cross section microhardness after hardening in air CEEA is carried out on both sides of the part. The application of the method is accompanied by a significant reduction of costs on electricity and time for heat treatment, the absence of distortion and deformation, hence the need for additional machining for eliminate deviations of shape workpiece after heat treatment, using simple and environmentally friendly equipment.

Downloads

Download data is not yet available.

References

References

Panasyuk А., Umanskyi O., Storozhenko M., Akopyan V. Development of TiB2−based cermets with Fe−Mo binder. Key Engineering Materials, 2013. Vol. 527. P. 9–13. DOI:10.4028/www.scientific.net/KEM.527.9

Umanskyi O., Storozhenko M., Antonov M., Terentjev O., Koval О., Goljandin D. Effect of thermal spraying method on the microstructure and wear behaviour of FeNiCrBSiC−CrB2 coating. Key Engineering Materials, 2019. Vol. 604. P. 16–19. DOI: 10.4028/www.scientific.net/KEM.799.37

Storozhenko M. S., Umanskii A. P., Terentiev A. E., Zakiev I. M. Effect of the structure of TiB2−(Fe−Mo) plasma coatings on mechanical and tribotechnical properties. Powder metallurgy and Metal Ceramics, 2017. Vol. 56, № 1−2. Р. 60−69. DOI: 10.1007/s11106-017-9847-y

Barvinok V.A., Smelov V.G., Sotov A.V., Kosyrev S.A. Vosstanovleniye tortsa pera lopatki GTD metod impul'snoy lazernoy naplavki. Problemy mashinostroyeniya i avtomatizatsii, 2014. № 3. S. 158-162.

Smelov V.G., Sotov A.V., Kosirev S.A. Development of process optimization technology for laser cladding of GTE compressor blades. ARPN Journal of Engineering and Applied Sciences, 2014. V. 9. No 10. P. 1854-1858.

Zhatkin S.S., Parkin A.A., Minakov Ye.A. Osobennosti mikrostruktury Stellite 190W pri plazmenno-poroshkovoy naplavke na med'. Yestestvennyye i tekhnicheskiye nauki, 2011. № 6(56). S. 562-564.

Shu-Hung Yeh, Liu-Ho Chiu, Heng Chang Effects of Gas Nitriding on the Mechanical and Corrosion Properties of SACM 645 Steel. Engineering, Scientific Research Publishing, 2011. T. 9(3). S. 942-948.

Shovkoplyas A. V. Diskovyye rabochiye organy boron: tekhnologii izgotovleniya i vosstanovleniya. Lesotekhnicheskiy zhurnal. Tekhnologii. Mashiny i oborudovaniye, 2016. №1. S. 203- 211.

Kozhuro L.M. Tekhnologiya sel'skokhozyaystvennogo mashinostroyeniya: kurs lektsíy. Minsk, 2005. – 414 c. - URL: http://www.batu.edu.by/publication/tekhnologiya-selskokhozyaistvennogo- mashinostroeniya-kurslektsiil-m-kozhuro.

Sposob izgotovleniya nozhey selskohozyaystvennyih mashin: pat. 2031146 RF: MPK C21D9/18; zayavl. 09.07.1992, opubl. 20.03.1995. 3 s.

Safonov B.P. Tehnologicheskie protsessyi v servise. Chast 2. Spravochnyie materialyi dlya studentov spetsializatsii 230712: uchebnoe posobie. Novomoskovsk: RHTU im. D.I. Mendeleeva, 2007. 57 s.

Radionov A.V. Otsenka tehnogennogo riska oborudovaniya opasnyih proizvodstv sistemnyim mnogourovnevyim analizom. Zbirnik naukovih prats NUK, 2015. No 4. S. 82-91.

Lazarenko N.I. Elektroiskrovoe legirovanie metallicheskih poverhnostey. M.: Mashinostroenie, 1976. 46 s.

Sposib tsementatsiyi stalevyh detaley elektroeroziynim leguvannyam: pat. Ukrainy na vinahid 82948: MPK 23S 8/00; opubl. 25.03.2008, Byul. No 10. 4 s.

Spossb tsementatsiyi stalevih detaley elektroeroziynim leguvannyam: pat. Ukrainy na vinahid 101715: MPK 23N 9/00, opubl. 25.01.2013, Byul. No 8. 3s.

Shovkoplyas A. V. Diskovyie rabochie organyi boron: tehnologii izgotovleniya i vosstanovleniya. Lesotehnicheskiy zhurnal. Tehnologii. Mashinyi i oborudovanie, 2016. No 1. S. 203- 211.

Zayavka reyestratsiynyy №a201909724 vid 10.09.2019 r. na vydachu patentu na vynakhid

«Sposib ekolohichno bezpechnoho zmitsnennya detaley z lystovoyi stali metodom elektroeroziynoho lehuvannya stalevykh poverkhonʹ hrafitovym elektrodom» Tarelʹnyk V.B., Martsynkovsʹkyy V.S., Haponova O.P., Sarzhanov O.A., Konoplyanchenko YE.V., Hapon O.O., Sarzhanov B.O.

Published

2020-02-24

How to Cite

Тарельник, В. Б. ., Гапонова, О. П. ., & Саржанов, Б. О. . (2020). METHOD OF ENVIRONMENTALLY FRIENDLY HARDENING OF SHEET METAL PARTS BY ELECTROEROSIVE ALLOYING WITH A GRAPHITE ELECTRODE. Ecological Safety and Balanced Use of Resources, (19(2), 118-126. https://doi.org/10.31471/2415-3184-2019-2(20)-118-126

Issue

Section

ENVIRONMENTAL PROTECTION TECHNOLOGIES