ANALYSIS OF CAPABILITIES AND EXPERIENCE OF USING THE GOOGLE EARTH ENGINE PLATFORM FOR ENVIRONMENTAL MONITORING CHALLENGES

Authors

  • L. Davybida Ivano-Frankivsk National Technical University of Oil and Gas

DOI:

https://doi.org/10.31471/2415-3184-2021-2(24)-75-86

Keywords:

remote sensing of the Earth, applied geoinformatics, cloud technologies, geoinformation systems, geodatabases, normalized difference indices

Abstract

The purpose of the study is to assess the potential of using the Google Earth Engine (GEE) platform for processing remote sensing data in solving various problems of environmental monitoring and in other areas of applied geoinformatics. GEE is an open cloud platform that allows providing the analysis and visualization of large-scale geospatial datasets for scientific, educational, public, governmental and commercial organizations. GEE provides open-source tools for geospatial analysis, as well as access to a public catalogue of raster and vector data, which includes satellite images, meteorological, geophysical observation data, and more else. In the paper, the structure and functions of the platform were analyzed, as well as the possibilities of obtaining open data of remote sensing, provided by the GEE catalogue, for the regional environmental monitoring problems solution. A systematic review of current scientific publications was carried out, which confirmed the wide range of applications of the platform by scientists from different countries for the analysis of the environment both regionally and globally. One of the most common types of tasks implemented by GEE is the calculation of normalized difference indices used for mapping vegetation, crops, land cover, biodiversity and monitoring of fires, droughts and other negative natural and man-made processes. One of the most common types of tasks implemented by GEE is the calculation of normalized difference indices used for mapping vegetation, crops, land cover, biodiversity and monitoring of fires, droughts and other negative natural and man-made processes. For the studied territory of the Carpathian region, an assessment of the time period of the available observation data, coverage of satellite images, their spatial resolution, decoding characteristics was performed. According to the data of multi-channel space images, the normalized difference indices NDVI, MNDWI, NDBI were calculated using the GEE code editor and JavaScript programming language, and the obtained results were visualized.

Downloads

Download data is not yet available.

References

Google Earth Engine: Planetary-scale geospatial analysis for everyone / Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R. // Remote Sens. Environ. – 2017. – № 202. – 18–27.

Progress and Trends in the Application of Google Earth and Google Earth Engine/ Zhao Q., Yu L., Li X., Peng D., Zhang Y., Gong, P. // Remote Sens. – 2021. – № 13. – 3778 p. doi.org/10.3390/rs13183778

Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review / M. Amani et al. // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. – 2020. – № 13. – 5326-5350. doi: 10.1109/JSTARS.2020.3021052

Kumar L. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential / L. Kumar, O. Mutanga // Remote Sens. – 2018. – № 10. – 1509 p.

Google Earth Engine for geo-big data applications: A meta-analysis and systematic review/ Tamiminia H., Salehi B., Mahdianpari M., Quackenbush L., Adeli S., Brisco, B.// ISPRS Journal of Photogrammetry and Remote Sensing. – 2020. - № 164. – pp. 152-170. doi: 10.1016/j.isprsjprs.2020.04.001

An Operational Before-After-Control-Impact (BACI) Designed Platform for Vegetation Monitoring at Planetary Scale / Poortinga A., Clinton N. and others. // Remote Sens. – 2018. – № 10. – 760 p.

Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine/ Tsai Y.H., Stow D. and others. // Remote Sens. 2018. –№ 10. – 927 p.

A mangrove forest map of Chinain 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform/ Chen B. and others // ISPRS J. Photogramm. Remote Sens. – 2017. – № 131. – pp. 104–120. doi.org/10.1016/j.isprsjprs.2017.07.011

A large-scale change monitoring of wetlands using time series Landsat imagery on Google Earth Engine: a case study in Newfoundland. / Mahdianpari M., Jafarzadeh H., Granger J., Mohammadimanesh F., Brisco, B., Salehi B., Homayouni S. // GIScience & Remote Sensing. – 2020. – 57(8). – pp. 1102-1124. doi: 10.1080/15481603.2020.1846948

Ballanti L. K. Remote Sensing for Wetland Mapping and Historical Change Detection at the Nisqually River Delta / Ballanti L. K., Byrd I., Woo and C. Ellings // Sustainability. – 2017. – № 9. – P. 1919. doi:10.3390/su9111919

Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine / Zurqani, H.A., Post, C.J., Mikhailova, E.A., Schlautman, M.A., Sharp, J.L. // Int. J. Appl. Earth Obs. Geoinf. – 2018. – № 69. – pp. 175–185.

Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping / Shelestov A., Lavreniuk M., Kussul N., Novikov A., & Skakun S. // Frontiers in Earth Science. – 2017. – № 5. – 17. doi.org/10.3389/feart.2017.00017

Kussul N.Crop inventory at regional scale in Ukraine: developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery / Kussul N., Lavreniuk M., Shelestov, A., & Skakun, S. // European Journal of Remote Sensing. – 2018. – 51 (1). – pp. 627-636.

Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data / Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. // IEEE Geoscience and Remote Sensing Letters. – 2017. – 14(5). – pp. 778–782.

Миронюк В. В. Класифікація лісового покриву за сезонними композитними мозаїками Landsat / В. В. Миронюк // Науковий вісник НЛТУ України. – 2018. – 28(1). – С. 28–33.

Зібцев С. В. Просторово-часовий розподіл пожеж у природних ландшафтах Рівненської області / С. В. Зібцев, В. В. Миронюк, О. М. Сошенський, М. C. Корень, В. А. Корень // Науковий вісник НЛТУ України. - 2019. – 29(6). - С. 18-23.

Бородатий П. А. Геоінформаційна технологія аналізу хмарності на території Західної України з використанням супутникових зображень / П. А. Бородатий, Р. А. Бунь // Вісник Національного університету «Львівська політехніка». Серія: Інформаційні системи та мережі. – 2018. – № 887. – С. 31–42.

Zyelyk Ya. I. Enhancement of the spatial resolution of the land surface thermal field imagery based on the multispectral data coupling from various space systems / Ya. I. Zyelyk, S. V. Chornyy and L. V. Pidgorodetska // 19th International Conference on Geoinformatics – Theoretical and Applied Aspects, Retrieved from www.scopus.com.

Затверджені стандарти вищої освіти (2021). веб-сайт. URL: https://mon.gov.ua/ua/osvita/visha-osvita/naukovo-metodichna-rada-ministerstva-osviti-i-nauki-ukrayini/zatverdzheni-standarti-vishoyi-osviti (дата звернення: 23.09.2021).

Карпатський регіон: актуальні проблеми та перспективи розвитку; Том 1. Екологічна безпека та природно-ресурсний потенціал / наук. ред. В.С. Кравців// НАН України. Інститут регіональних досліджень – Львів. – 2013. – 336 с.

Published

2022-02-07

How to Cite

Davybida Л. І. (2022). ANALYSIS OF CAPABILITIES AND EXPERIENCE OF USING THE GOOGLE EARTH ENGINE PLATFORM FOR ENVIRONMENTAL MONITORING CHALLENGES. Ecological Safety and Balanced Use of Resources, (2(24), 75–86. https://doi.org/10.31471/2415-3184-2021-2(24)-75-86

Issue

Section

ECOLOGICAL MONITORING, ENVIRONMENT STATE MODELING AND FORECASTING